
Journal of Applied Mechanics and Technical Physics, Vol. 39, No. 5, 1998 

I N V E S T I G A T I O N  OF T H E  S P E C T R U M  OF S H O R T - W A V E  

G O R T L E R  V O R T I C E S  IN A GAS 

V .  V .  B o g o l e p o v  UDC 532.526.013.4 

The linear stage of  short-wave Giirtler vortices in the boundary layer near a concave surface 
is studied for  the regime of weak hypersonic viscid-inviscid interaction at high Reynolds and 
G6rtler numbers. It is assumed that the gas is perfect and the viscosity is a linear function of the 
enthalpy. It is found that neutral vortices are located near the surface i f  it has zero temperature. 
When the surface is heated, the vortices move away from it, whereas all newly incipient vortices 
are located near the surface. It is shown that the growth rate of  the vortices has a mazimum 
and the heating of  the surface has a stabilizing effect on the vortices. 

An asymptotic theory (for high Reynolds and G6rtler numbers) of G6rtler vortices [7] has been 
developed [1-6] for a liquid. The basic modes are studied in order of increasing wavelength of the vortices: 

- -  neutral short-wave vortices that have risen into the main part of the boundary layer, 
near-wall short-wave vortices with a maximum growth rate, 

- -  vortices with a wavelength comparable with the boundary-layer thickness, 
- -  long-wave first mode, which induces a three-layer disturbed flow, 

long-wave neutral vortices with a maximum wavelength, for which the "growth" of the boundary 
layer should be taken into account. 

Model boundary-value problems have been posed for all regimes, similarity parameters have been 
determined, and numerical or analytical solutions have been obtained in a linear approximation. Nonlinear 
solutions have been obtained for certain regimes [8-10]. 

The modern stage of development of hypersonic flying vehicles has initiated the study of G6rtler vortices 
in a gas. These ordered vortex structures can significantly affect heat exchange in boundary layers and flow 
structures with a curvature (for example, due to flow reattachment [ll  D. In early papers, for instance [12], 
the effect of various flow parameters on the eigenvalues of linearized Navier-Stokes equations was studied. It 
has been found that the allowance for compressibility, an increase in viscosity, or an increase in the surface 
temperature have a stabilizing effect on the vortices, whereas adverse pressure gradients have an opposite effect. 
Obviously, for moderate free-stream Mach numbers, the structure of the vortices should not be significantly 
different from their structure in a liquid. Thus, Spall and Malik [13] and Wadey [14] studied long-wave vortices 
in a gas for which it is necessary to take into account the "growth" of the boundary layer. It has been found 
that unstable vortices shift toward the outer edge of the boundary layer as the Mach number increases [14]. 
Lipatov [15] and Bogolepov and Lipatov [16] studied an asymptotic structure of vortices with a wavelength 
comparable with or exceeding the boundary-layer thickness. It this case, the effects of varying gas density 
can be manifested. It is usually assumed, however, that the main difference of the hypersonic boundary layer 
from the boundary layer in a liquid is the presence of a temperature adjustment layer near the boundary-layer 
edge, where the temperature rapidly decreases from the deceleration value to its free-stream value [17-19]. 
Real gas properties were also taken into account in [19]. 
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Short-wave vortices in the near-wall portion of the boundary layer near a strongly cooled surface in 
the regime of weak hypersonic viscid-inviscid interaction [20] were studied in [21, 22]. It was shown that  if the 
surface has zero temperature ,  the neutral vortices do not rise into the main portion of the boundary layer, and 
the normalized growth rate of the ampli tude of the vortices has a maximum.  When the surface temperature  
is different from zero, the neutral  vortices move away from it. 

1. The uniform viscous gas flow around a concave surface is considered for high but  subcritical Reynolds 
numbers Reoo = poouooL/i.too >> 1, i.e., it is assumed that  the boundary-layer flow remains laminar. Here 
L is a certain streamwise distance measured from the leading edge of the surface; poo, uor and /zoo are 
the free-stream density, velocity, and viscosity of the gas. It is supposed that  the surface curvature is small 
k = L / R  << 1 (R is the  radius of the surface curvature). In what follows, only dimensionless variables are 
used. All linear dimensions are normalized to L, the pressure p and enthalpy h to poou~ and u 2 ,  respectively, 
and the remaining stream functions to their free-stream values. 

The free-stream Mach number  is assumed to be rather high Moo >> 1. It is known [20] that  the 
deceleration of a gas in a boundary layer at high supersonic free-stream velocities leads to very high 
temperatures in the boundary layer and a significant increase in its thickness. Thus,  it is necessary to evaluate 
the pressure perturbat ion due to the displacing action of the boundary layer. It is assumed to be small as 
compared with the free-stream pressure Apl ,.., 6/Moo << 1/M 2 (6 is the boundary-layer thickness). The 
pressure perturbat ion due to the surface curvature is also assumed to be small Ap2 --. k/Moo << 1 /M~.  
Hence, it follows that  for s t ream functions in the boundary layer with characteristic dimensions Az  -~ 1 and 
Ay .~ 6 (the x axis is directed streamwise along the surface and the y axis is normal to it) the following 
estimates for the regime of weak hypersonic viscid-inviscid interaction are valid [20]: 

1 9. M 2 6 (1.1) 
u , - , h , - , 1 ,  u , , ,6 ,  p , ' . , p , . - ,M2 , #,,~Moo, 6,'.,R,~l/.------i, CI , . . ,Cq , . . ,M~ .  

~ O O  

Here u and v are the velocity components  along the z and y axes, and C i and Cq are the friction-stress and 
heat-flux coefficients. In obtaining estimates (1.1) we used the linear dependence of viscosity on enthalpy 

# = A M ~ h  (1.2) 

and the equation of state for a perfect gas 
7P = ( 7 -  1)ph, (1.3) 

where A is a constant and 7 is the  ratio of specific heats. 
Assuming the coefficients C I and Cq to preserve the  orders of magni tude in the near-wall portion of 

the boundary layer for y /6  << 1, we obtain the following equation from (1.1) and (1.2): 

C,  = M-'~ = ReooP-"----'r kay/ , , ,  C i  = M-5"~ C = -  Reoo \OyJw (1.4) 

h = k A 6 + hw) , u = ~C _ ..m-~ + - ~ 

where B and C are certain constants, h~ is the Prandtl  number,  and h~ is the  enthalpy of the gas near the 
surface. For high supersonic velocities of the incoming flow, the value of h~ on the cooled surface is small 
(hw << 1). This substantially alters the properties of the boundary layer compared with the case of finite 
values of hw [23]. 

For finite values of hw [(y/6) 1/2 << hw ~< 1], from relations (1.4) we obtain 

B y  C y 
h ,~ h,,, + Ah-'-'~ -~' u ,.~ Ah'--"~ -~" (1.5) 

Relations (1.5) show tha t  in this case the near-wall portion of the boundary layer is isothermic and has a 
linear profile of the longitudinal velocity. 

It is known that ,  under  certain conditions, a two-dimensional laminar boundary layer near a concave 
surface can become unstable [7]. Then steady GSrtler vortices extended in the streamwise direction are formed 
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ipside the boundary layer, and the two-dimensional flow becomes three-dimensional. This transition occurs 
when a certain critical value of the GSrtler number Goo = 2 ( R e ~ 2 / M ~ o ) ( L / R )  is exceeded. Below, we study 
a disturbed flow with high GSrtler numbers Goo "-, ~e/6 >> 1, k = ~eK, h" -,- 1, and ~e << 1, where the vortices 
certainly exist. 

2. We study a dis turbed vortex flow region with a characteristic thickness Ay << 6 near the surface 
at a distance Az  -~ 1 from its leading edge, in which the vortices are localized. It is assumed that  the loss of 
stability of the boundary layer caused by vortex formation induces nonlinear disturbances of stream functions 
in this region (for example,  Au ,,, u). If we denote the orders of magni tude of the longitudinal velocity and 
enthalpy as u0 amd h0, then,  taking into account (1.1), from Eqs. (1.2) and (1.3) we obtain 

2 p ~ 1 /M~,  p ~- 1 /M~h0 ,  p ~ Mooh0. (2.1) 

A comparison of the  orders of magni tude of the convective terms of the Navier-Stokes equations shows 
that the additional pressure perturbat ion 

A p  k p u 2 A y  2 2 ~' ": ~eUoAV /Mooho (2.2) 

arises in the field of centrifugal forces, and it induces a transverse velocity component  w directed along the z 
axis perpendicular to the  xy plane: 

w ,-, ( A p / p )  1/2 ,,, a~ll2uoAya/2. (2.3) 

Assuming tha t  the  transverse dimensions of the disturbed region along the  y and z axes are generally 
equal in order of magni tude  Ay ~, Az, from the equation of continuity we obtain 

v ~ w, Ay ,.- Az -.~ ~eAx 2, (2.4) 

where Ax is the characteristic length of the disturbed region. A comparison of the orders of magnitude of the 
main convective and dissipative terms of the Navier-Stokes equations yields the  expression 

A x  a ~' S2h•/aeZuo. (2.5) 

The  estimates for the  transverse velocity component  w, which represents vortex disturbances of the 
boundary layer, are found from a comparison of the  orders of magni tude of the convective terms of the 
Navier-Stokes equations. Thus,  convection is the basic mechanism in the formation of G6rtler vortices. 

For small values of h~ [0 <~ h,~ < ( A y / 6 ) l / 2  << 1], relations (1.4) and estimates (2.4) and (2.5) lead to 
the following estimates for u0, h0, and the characteristic dimensions of the dis turbed region: 

u0 "~ h0 -'~ , Ax -~ << 1, Ay ~, Az ~ ~ << 6. (2.6) 

If ( A y / $ )  a/2 <<: h~ <~ 1, then  from (1.5), (2.4), and (2.5) it follows tha t  

ho ~, h,,,, uo "., A y / 6 h , n ,  A x  ,,, ($h,n/se) 3/s << 1, A y  ,,, A z  ~, 6hw(t~hw/~e) 1/s << 6. (2.7) 

Estimates (2.6) and (2.7) show that  surface heating leads to an increase in the  dimensions of the 
vortices. For h~ .,, 1, from (2.7) we obtain estimates for the dimensions of the disturbed region in a liquid [3, 
4, 6]. 

Estimates (2.1)-(2.5) allow the introduction of new variables and asymptot ic  expansions of the stream 
functions for the disturbed region: 

�9 
, - -  �9 , 

2 2 2 1/3 2 v = (a~t~2u2h~)l/svl + . . . ,  w = (~.~ uoho) wl + . . . ,  /~ = Mooh0/q + . . . ,  (2.8) 

_~. = = ( ~ 2 / 3 ; ~ 4 / 3 . 4 / 3 h l / 3 / ~ , 2  , p (1/M~ho)pl +..., h hohl +..., p I/7M2oo +,- ~ ~0 "o /~v'ooJPl + .... 

Substitution of (2.8) into the Navier-Stokes equations and into (1.2) and (1.3) and passage to the limit 
for Moo --* oo, 6 ~ O, 6 << ~e << 1, Moo/i << 1, and Moo~e << 1 show that  in the first approximation the 
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disturbed flow region is described by the system of equations 

(plttl)Zl q- (PlU1)Yl -1- (PlWl)zl = 0 ,  pl(ttlUlzl -I- VlUly I -~- WlUlzl) = (#lUlyl)y 1 q- (#lUlzl)Zl , 

m(ulvl,~ + VlVl~ + wlvl~ + Ku~) + ply~ = (mVlyl)y~ + (mylar)z1, (2.9) 

Prp](ulhlz 1 + vlhlvl + wlhlzl)  = (plhl~l)~a + (plhlzl)zl ,  ( 7 - 1 ) p l h l  = 1 ,  #1 = A h l .  

On the surface we set the usual conditions for the velocity components and enthalpy: 

Ul = vl = wl = 0, hl = hlw (yl = 0). (2.10) 

Here h1~, = hw/ho, and the external and initial boundary conditions are obtained from matching with the 
solution for the near-wall portion of the boundary layer (1.4) 

C ( 2 8  2 \112 C ( ~ _  2 \1/2 ( 2 ~  A 2 \I/2 
,,1 --. -g  - - y l  + h i . , )  - -g  hi  --, y l  + h l w )  , . 1  - .  11(-  - 1) y l  + , 

( .~_ 2 ,~1/2 (2.11) 
/ ~ 1 - - * A . . .  Yl + h l~)  , v l ,wl  ~ O, Ply1 ~ - K P l  u2 (zl ~ -oo  or yl ~ c ~ ) -  

The periodicity condition is set in the transverse direction: 

f ( x l , y l , Z l )  = f ( z l , ya , za  + A), f = U l , 1 3 1 , W l , P l , P l  , h1,~1 (2.12) 

(A is the wavelength of the vortices). 
The solution of the boundary-value problem (2.9)-(2.12) describes short-wave G6rtler vortices in the 

near-wall portion of the boundary layer in a liquid or in a gas with Ay ~. Az << 6 and Az << 1 depending 
on the value of hlw. The evolution of the vortices in the first approximation proceeds in a plane-parallel flow, 
since for a small distance (Ax << 1) the longitudinal variation in the stream functions in the boundary layer 
is insignificant. 

In what follows, it is convenient to normalize the variables z l ,  yl, zl, ul ,  vl, wl, pl, pl, hi, and #x 
to the following quantities: (A/2~rK) 1/2, A/2r, A/2r, C ( A / A B r )  1/2, ( K / 2 A B ) l l 2 c A / x ,  ( K / 2 A B ) V 2 C A / r ,  
(A3[ABaTrS)l/2KC2[2(7 - 1), (A~r/BA)ll2[( 7 - 1), (BA /Ar )  1/2, and (AB)~/Tr) 1/2. In the new variables 
(without the subscript 1) the boundary-value problem (2.9)-(2.12) is transformed into 

(p~). + (p,)~ + (p~).  = 0. Rep( , , .  + , , ,  + ~ , . )  = (~ , , )~  + (u"~).. 

Re[p(ttVz q- VVy "4" WVz Jr" u 2) "1- p,] = (/~V~t), q- (pVz)z, 

KePrp(uhz + vhy + wh~) = (ph~)~ + (ph,)z, ph = 1, p = h, (2.13) 

u = v = w = O ,  h = D  (y = 0), 

u --* ho - D, v ,w .--* O, p "--* l /ho,  p ,h  ---~ ho, 

2 
P "~ --5 (h~ -- D3) + 2Dy - 2D2(h0 - D) (x --* - c ~  or y ~ c~), 

f ( x , y , z ) =  f ( x , y , z +  2rr), f = u , v , w , p , p , h , p ,  

CKI/2A / A t \  ~/2 
Re = 23/2~rA~/2B3/2(7_ 1)' O = hlw~-ff~) , ho(y) = (y + 02) 1/2, 

where Re is the local Reynolds number, D is the reduced enthalpy of the gas near the surface, and ho(y) is 
the enthalpy profile in the near-wall portion of the undisturbed boundary layer. 

For high values of the parameter D >> yl,]2 (y, is a certain thickness of the disturbed region), the 
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external and initial boundary conditions (2.13) are transformed into 

y 1 y y y3 
u ---, -~-~, v ,w  ---, 0, P "* D 2D 3' # .h  --., D + ~--~. p "--* 12D3. (2.14) 

It is seen from these expressions [see also relations (1.5)] that the flow is incompressible and isothermic 
with constant viscosity. It can be easily seen that, if we renormalize the variables, the boundary-value problem 
(2.13) is transformed to formulas that model short-wave vortices in the near-wall portion of the boundary 
layer in a liquid [3, 4, 6], in which the only similarity parameter is the local Reynolds number for the liquid 
Re.: 

Re. = Re/2D 3 ~ Kl12()~/ZTr) sl2. (2.15) 

3. For small perturbations of the original boundary-layer flow, formulas (2.13) can be linearized with 
respect to the initial boundary conditions 

u = h o - D + a U + . . . ,  v = c W + . . . ,  w = a W + . . . ,  h = h o + a H + . . . ,  / ~ = h 0 + a H + . . . ,  

2 1 H (3.1) 
P - 5  (ha~ D3) + 2 D y  2D2(h0 D ) + ~ P + . . . ,  p h0 h 2 ' 

where a << 1 and the final relations for p and # from (2.13) are already taken into account. In the new 
variables (3.1) the boundary-value problem (2.13) takes the form 

2h~(Uz + Vy + Wz - Hz) + 2DhoHx - V = O, 

2Reho[2ho(ho - D)Uz + V] = 4h~(U~y + fizz) + 2h2o(Uy + Hy) - H, 

[ o-O . (,,0- ] 
2Reho ho ho ho 2 H + P,  = 2h~(V,, + Vzz) + V u, 

ho[ h o -  D P,] 2h2o(W,, Wzz) IVy, (3.2) 2Re [ ~  W. + = + + 

2RePrho[2ho(ho - D)Hz + V] = 4h4(Hyy + Hzz) + 4h2oH~ - H, 

U , V , W , H , P - - * O  (y = 0 or x ---, - o o  or y --, oo), 

F(x,  y, z) = F( z ,  y, z + 27r), F = U, V, W, H, P. 

The boundary-value problem (3.2) allows a normal-mode representation of the solution [24]: 

F(z ,  y, z) = FI(y) exp (flz)(sin z, cos z). 

This allows us to transform the equations in partial derivatives (3.2) into ordinary differential equations 

2h2o(~U1 + VI' + Wl - fill1) + 2D~hoH1 - V1 = O, 

2Reho[2ho(ho - D)flVl + 1"11 4 ,, 2h~(U~ = 4h0(V ~ - 0"1) + + g~ )  - g l ,  

[h0 - D h0 - D U1 - (h0 - D)  2 ] 
2Reh0[ h0 13V1+2 ho h2 H I + P ~  = 2 h 2 ( V l " - V 1 ) + V 1  ', (3.3) 

h0 [h0 D 
] 2h0(W ~ - Wl) + W i, 2Re 1 . ~  flW1 - P1 = 2 ,, 

2Re Pr ho[2ho(ho - D)/~gl + V1] = 4h0(g  1 4  " - Hi)  + 4h2H~ - H1, 

Vl(0) = Y~(0) = Wl(0) = Hi(0) = U I ( ~ )  = ~ ( o o )  = Wl(oO) = / / l ( o o )  = P1(cr = 0. 

The solution of the boundary-value problem (3.3) is its eigenfunctions that correspond to the values 
of the parameters Re and fl (for instance, for fixed values of the parameters Pr and D). 

4. For high values of the local Reynolds number Re >> 1, the dissipative terms in (3.3) become 
insignificant, and only nonpenetration conditions can be satisfied on the surface. In this case, the boundary- 
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value problem (3.3) is substantial ly simplified, and it can be reduced to the following equation for the function 

[ h0 + n 1 ] 
2h 2 + [2h02(--~0 - 7 ) ) 3  2 -F 2h~(h0 - D) lJ V1 -- 0, VI(0) = Vl(oo) = 0. (4.1) 

For high values of the parameter  D >> yl/2, this equation is transformed to the equation for a liquid [3, 4, 6], 
for which the following analytical dependence is obtained: 

1/~ 2 = n, n = 1, 2, 3 . . .  (4.2) 

(n is the mode number).  The  eigenvalues of (4.1) were calculated by the method of inverse iterations with a 
shift [25]. Figure 1 shows the  values of 1/3  2 versus D for the first three modes (curves 1-3). It is seen that  even 
for D = 60 the calculation results differ insignificantly from exact analytical solutions (4.2). For these values 
of D and Re >> 1, the gas can be already considered incompressible and isothermic. To est imate the growth 
rate of the ampli tude of the  vortices, it is advisable to use the growth rate normalized to the characteristic 
length Az ,-~ 1: 

Be = (1/Ax)3(2rg/)o 1/2. (4.3) 

It is seen from Fig. 1 tha t  the value of 3 for all modes increases slightly with increase in D. It follows 
from estimates (2.7), however, tha t  Az  and A increase by an order of magnitude,  i.e., as D increases when 
the surface is heated, the value of Be decreases for Re >> 1. The  surface heating has a stabilizing effect on 
the vortices, which is explained by an increase in the dimensions of the disturbed region and a decrease in 
vorticity of the incoming flow [see relations (2.7) and (2.14)]. 

It was found in calculations that  for a zero tempera ture  of the  surface D = 0, the eigenvalue of the 
boundary-value problem (4.1) exists only for the first mode. As D increases to D ..~ 1, it is possible to find a 
second mode. And further,  as D increases, higher modes are obtained. This can be interpreted as excitation 
of higher degrees of freedom of a certain system as its tempera ture  increases. For D = 0, Eq. (4.1) admits the 
analytical solution 

[ (  ~ , 2 y ) - - ( F (  1/)~2)12F(3-}/'2)~2-y)lFl(1 4 VlCL/32'Y)=yexpC-Y)t iFix 3 4 ' - - j  

where 1Fl(a, b, x) is the Pochhammer degenerate hypergeometrical function and F(x) is the gamma function. 
It can easily be shown that this solution has only one extremum, i.e., it represents only the first mode. Figure 2 
shows calculated profiles of the function V1 (y) for the first three modes for D = 5. 

5. For numerical integration of the boundary-value problem (3.3), we use new dependent variables 
U, = U1, V, = ReV1, W, = ReW1, P,  = Re2P1, and H,  = Hi.  The  functions W, and P, are excluded from 
the number of variables, and the  boundary-value problem (3.3) is transformed to 

4 tt  2 t 2 t 4h0U. -F 2h0U'. - 4h2o[h2o + 3,(h0 - D)]U, = 2h0V. - 2h0g .  + H, ,  
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4 , 2 , 4Pr~.h02(h0- D ) I H .  = 2Prh0V.. 4 h 0 g  , + 4 h o H  , - [4h~ + 1 + 

[ 151v: A,4,z,,,, 2 ,,, [8h~ 48.h02(h0 D ) - 3 I V . " +  2h20 2~.(2 Pr)(h0 D ) + 2 h 2 ]  - = " 0 . .  - 2 h 0 V .  + + . . . .  

[ + 0 
+ l 1 2 h ~  - -  - + 

_- ~ o ~ o _  ~)(~,. ~o- ~,, .)  + r ~ .  + ~ . ~ _  ~)~o~o- ~)~],,: 

[ 15 ho h----'~- D (5Pr - 2)] -/~,D[6ho + 2~o + 2~, H,, 

v,(o) = v.(o) = v:(o) = v,(oo) = v.(oo) = v:(oo) = o 

(8, = Re8 and the local G6rtler number is G = 2Re2). To determine the eigenvalues of the boundary-value 
problem (5.1), we used the same method of inverse iterations [25]. From the known functions U,, V,, and H, 
we determined the function W, from the equation 

V, ' ~/,(U, h~ w'=~0-v:- r0 
In the calculations we prescribed values of the Prandtl number Pr and the parameter D, and solving 

(5.1), determined the eigenfunctions U,, V,, and H,,  and the eigenvalue of G for various values of fl,. All 
calculations were performed only for the first mode. To calculate higher modes, it is necessary to reduce system 
(5.1) to one equation and use the previous method. This requires great analytical and calculation effort, and 
the results obtained will not be of principal importance. 

Figure 3 shows profiles of the functions U,, V,, and W, (curves 1-3) for neutral vortices (8, = 0) for 
D = 0, 10, and 20 and Pr = 1 (it can easily be seen that in this case U, = H,). For D = 0 (Fig. 3a) the 
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vortices are located directly on the surface and do not rise into the main portion of the boundary layer, as 
occurs in a liquid. As D increases, the neutral vortices move away from the surface, their vertical dimensions 
increase (the vortices become flattened in the transverse direction), and the flow near the surface remains 
undisturbed (Fig. 3b and c). The calculations show that as ~, increases, the vortices that have risen gradually 
approach the surface. 

Figure 4 shows the growth rate/~ (curves 1) and the quantity (~/Re '/2) �9 10 m, proportional to the 
reduced growth rate Be (curves 2), 

= A z  \ X ] "~ Re"l/2 

as functions of the locM Reynolds number Re for D -- 0, 10, and 20 (m -- 1, 2, and 3, respectively) and 
Pr -- 1. The value of ~ increases monotonically, and for Re ) )  1 it should approach its asymptotic value 
determined by solution of boundary-value problem (4.1) (see Fig. 1). The quantity ~ /Re  1/2 should obviously 
have a maximum, since fl -- 0 on one end of the curves and Re --, oo as ~ --* const on the other. The bending 
of the curves in Fig. 4b and c near the coordinate origin can be attributed to flow rearrangement: the vortices 
go down here and approach the surface. From the picture of distributions of f l /Re 1/2, it can be concluded 
that as D increases (the surface is heated), the maximum point shifts to the region of high values of the local 
Reynolds numbers, and the value of the extremum itself decreases significantly. This proves a stabilizing effect 
of surface heating on the vortices for finite values of Re as well (see Sec. 4). 

Figure 5 shows values of Re and Re. �9 3000 for neutral vortices [see (2.15)] versus D (curves 1 and 
2). It is seen that surface heating leads to a dramatic increase in the minimum value of the local Reynolds 
number that makes the flow unstable, i.e., it has a strong stabilizing effect on the process of incipience of the 
vortices. Apart from the increase in vortex dimensions and decrease in vorticity in the incoming flow, surface 
heating is also manifested in the rising of vortices into the main portion of the boundary layer, in which the 
vorticity is even smaller than it is near the surface. A change in the Prandtl number Pr from 0.7 to 1.0 leads 
to an approximately 1.5% increase in the values of Re, which is not visible in Fig. 5. A drastic decrease of 
Re, shows that, as D increases, the flow approaches a state typical of a liquid (Re. --~ 0 as fl --. 0 [3, 4, 6]). 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
01537). 
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